Search results for "small-angle x-ray scattering"

showing 10 items of 126 documents

Hybrid Biopolymer and Lipid Nanoparticles with Improved Transfection Efficacy for mRNA

2020

Cells 9(9), 2034 (1-19) (2020). doi:10.3390/cells9092034

0301 basic medicine570small angle scatteringNanoparticlecationic lipid02 engineering and technologyengineering.materialTransfectionArticleCell LineFatty Acids Monounsaturated03 medical and health sciencesMiceBiopolymersddc:570AnimalsHumansRNA MessengerParticle Sizelcsh:QH301-705.5chemistry.chemical_classificationMice Inbred BALB Ccancer immunotherapySmall-angle X-ray scatteringHeparinOptical ImagingCationic polymerizationGeneral MedicinePolymerTransfection021001 nanoscience & nanotechnologyvaccinationSmall-angle neutron scatteringLipidslipid-polymer hybrid nanoparticlesQuaternary Ammonium Compounds030104 developmental biologychemistrylcsh:Biology (General)cationic polymerBiophysicsengineeringNanoparticlesRNAFemalePolymer blendBiopolymer0210 nano-technologyCovid-19
researchProduct

Structure and Stability of Hsp60 and Groel in Solution

2016

Molecular chaperones are a class of proteins able to prevent non-specific aggregation of mitochondrial proteins and to promote their proper folding. Among them, human Hsp60 is currently considered as a ubiquitous molecule with multiple roles both in maintaining health conditions and as a trigger of several diseases. Of particular interest is its role in neurodegenerative disorders since it is able to inhibit the formation of amyloid fibrils.Hsp60 structure was considered, until recent years, analogue to the one of its bacterial homolog GroEL, one of the most investigated chaperones, whose crystallographic structure is a homo-tetradecamer, made up of two seven member rings. On the contrary, …

0301 basic medicineCircular dichroismSmall-angle X-ray scatteringBiophysicsGroELDissociation (chemistry)03 medical and health scienceschemistry.chemical_compoundCrystallographyMolecular dynamics030104 developmental biologyMonomerchemistryBiophysicsMoleculeHSP60Biophysical Journal
researchProduct

Comment on “Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water”

2018

Editors at Science requested our input on the above discussion (comment by Best et al . and response by Riback et al .) because both sets of authors use our data from Fuertes et al . (2017) to support their arguments. The topic of discussion pertains to the discrepant inferences drawn from SAXS versus FRET measurements regarding the dimensions of intrinsically disordered proteins (IDPs) in aqueous solvents. Using SAXS measurements on labeled and unlabeled proteins, we ruled out the labels used for FRET measurements as the cause of discrepant inferences between the two methods. Instead, we propose that FRET and SAXS provide complementary readouts because of a decoupling of size and shape fl…

0301 basic medicinePhysicsMultidisciplinarySmall-angle X-ray scatteringScattering010402 general chemistryIntrinsically disordered proteins01 natural sciences0104 chemical sciences03 medical and health sciences030104 developmental biologyFörster resonance energy transferStatistical physicsDecoupling (electronics)Science
researchProduct

Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature

2017

α–synuclein amyloid fibrils are found in surviving neurons of Parkinson's disease affected patients, but the role they play in the disease development is still under debate. A growing number of evidences points to soluble oligomers as the major cytotoxic species, while insoluble fibrillar aggregates could even play a protection role. In this work, we investigate α–synuclein fibrils dissociation induced at high pressure by means of Small Angle X-ray Scattering and Fourier Transform Infrared Spectroscopy. Fibrils were produced from wild type α–synuclein and two familial mutants, A30P and A53T. Our results enlighten the different reversible nature of α–synuclein fibrils fragmentati…

0301 basic medicineSmall AngleAmyloidHigh-pressureMutantBiophysicsmacromolecular substances010402 general chemistryFibril01 natural sciencesBiochemistryDissociation (chemistry)Scattering03 medical and health scienceschemistry.chemical_compoundX-Ray DiffractionScattering Small AngleSpectroscopy Fourier Transform InfraredPressureHumansPoint MutationFourier transform infrared spectroscopyMolecular BiologySpectroscopyAlpha-synucleinAmyloid; FTIR; High-pressure; SAXS; α-synuclein; Amyloid; Humans; Parkinson Disease; Point Mutation; Pressure; Scattering Small Angle; Solubility; Spectroscopy Fourier Transform Infrared; X-Ray Diffraction; alpha-Synuclein; Biophysics; Biochemistry; Molecular BiologySmall-angle X-ray scatteringWild typeα-synucleinParkinson DiseaseSAXSAmyloid fibril0104 chemical sciences?-synucleinCrystallography030104 developmental biologyBiophysicchemistryFTIRSolubilityFourier Transform InfraredBiophysicsalpha-SynucleinHuman
researchProduct

Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin

2017

Gellan nanohydrogel and phospholipid vesicles were combined to incorporate baicalin in new self-assembling core-shell gellan-transfersomes obtained by an easy, scalable method. The vesicles were small in size (~107 nm) and monodispersed (P.I. ≤ 0.24), forming a viscous system (~24 mPa/s) as compared to transfersomes (~1.6 mPa/s), as confirmed by rheological studies. Gellan was anchored to the bilayer domains through cholesterol, and the polymer chains were distributed onto the outer surface of the bilayer, thus forming a core-shell structure, as suggested by SAXS analyses. The optimal carrier ability of core-shell gellan-transfersomes was established by the high deposition of baicalin in th…

3003SwinePharmaceutical ScienceMedicine (miscellaneous)02 engineering and technology01 natural sciencesMicechemistry.chemical_compoundDrug Delivery Systemsmaterials science (all)skin deliveryGeneral Materials ScienceSkinchemistry.chemical_classificationSkin repairSmall-angle X-ray scatteringBilayerVesicleAnti-Inflammatory Agents Non-SteroidalPolysaccharides BacterialPolymer021001 nanoscience & nanotechnologymedicine.anatomical_structureMolecular MedicineFemale0210 nano-technologytransfersomesSkin AbsorptionBiomedical EngineeringgellanBioengineeringAdministration Cutaneous010402 general chemistryIn vivo studiesDermisIn vivoSAXS analysismedicineAnimalsgellan; In vivo studies; rheological studies; SAXS analysis; skin delivery; transfersomes; bioengineering; medicine (miscellaneous); molecular medicine; biomedical engineering; materials science (all); 3003rheological studiesFlavonoidsInflammationWound Healing0104 chemical sciencesAnimals NewbornchemistryLiposomesBiophysicsNanoparticlesBaicalin
researchProduct

Investigation of charge ratio variation in mRNA – DEAE-dextran polyplex delivery systems

2019

Biomaterials 192, 612 - 620 (2019). doi:10.1016/j.biomaterials.2018.10.020

570Static ElectricityBiophysicsBioengineering02 engineering and technologyGene deliveryBiomaterials03 medical and health scienceschemistry.chemical_compoundDrug Delivery SystemsX-Ray DiffractionDynamic light scatteringddc:570Scattering Small AngleHumansRNA MessengerParticle Size030304 developmental biology0303 health sciencesMessenger RNAHeparinSmall-angle X-ray scatteringDEAE-DextranBiological activityDendritic CellsTransfection021001 nanoscience & nanotechnologySmall-angle neutron scatteringDextranchemistryMechanics of MaterialsCeramics and CompositesBiophysics0210 nano-technology
researchProduct

Rheological modifiers based on supramolecular block copolymers: From weak associations to interconnected micelles

2019

Abstract The rheological spectra of poly(n-butyl acrylate) in the presence of a series of P(nBA-b-HEMA) rheology modifiers show a two-step relaxation process originating from the PnBA matrix and the self-assemblies. The HEMA segments are further grafted with strong, hydrogen bonding UPy groups, which both magnifies and slows down the relaxation of the assemblies. The extents of associations are enlightened by studying thermal transitions in DSC, morphological developments by SAXS, and description of rheological properties using a tube-based model. It is revealed that a weak association tendency, due to long hydrophobic blocks, leads to the formation of double-linear or star assemblies, whil…

AcrylateMaterials sciencePolymers and PlasticsSmall-angle X-ray scatteringHydrogen bondGeneral Chemical EngineeringRelaxation (NMR)Supramolecular chemistry02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistryMicelle0104 chemical scienceschemistry.chemical_compoundchemistryChemical engineeringRheologyMaterials ChemistryCopolymerEnvironmental Chemistry0210 nano-technologyReactive and Functional Polymers
researchProduct

On the nature of phase separation in a commercial aluminium-lithium alloy

1996

Abstract The formation of lithium-rich precipitate particles, known as δ′ phase, is responsible for the particularly desirable mechanical properties which make aluminium-lithium alloys interesting for different industrial applications. The structure and the kinetics of the phase separation process are conveniently studied by small-angle X-ray scattering, though uncertainties remain on the actual shape of the phase diagram of the system, particularly in the region of interest. In this paper are reported small-angle X-ray scattering measurements on a commercial AlLi (8.49% Li atoms) both in the region of formation of the precipitate and during its successive growth. Modelling of the experime…

Aluminium-lithium alloyPrecipitation (chemistry)Small-angle X-ray scatteringScatteringSpinodal decompositionChemistryOrganic ChemistryNucleationThermodynamicsAnalytical ChemistryInorganic ChemistryCrystallographyPhase (matter)SpectroscopyPhase diagramJournal of Molecular Structure
researchProduct

Structural Characterization of Zirconia Nanoparticles Prepared by Microwave-Hydrothermal Synthesis

2009

Nanocrystalline zirconia powders have been prepared by microwave-hydrothermal synthesis starting from aqueous solution of ZrOCl2·8H2O. Results of investigations on the aqueous suspension stability of the washed zirconia nanopowders by dynamic light scattering showed that the suspension, constituted by superaggregates of nanoparticles (131 ± 10 nm), was stable up to 15 days. Nanopowders were investigated by means of transmission electron microscopy and small angle x-ray scattering measurements which proved that the zirconia nanopowder is constituted by small primary nanoparticles of ca. 8 nm that agglomerate forming bigger aggregates of 50 ± 1 nm.

Aqueous solutionMaterials sciencenanostructurePolymers and PlasticsElectron microscopy; nanostructures; oxides; surface propertiesSmall-angle X-ray scatteringNanoparticleMineralogyNanocrystalline materialSurfaces Coatings and FilmsDynamic light scatteringChemical engineeringTransmission electron microscopynanostructuresoxidesElectron microscopyHydrothermal synthesissurface propertiesCubic zirconiaoxidePhysical and Theoretical ChemistryJournal of Dispersion Science and Technology
researchProduct

29Si NMR and Small-Angle X-ray Scattering Studies of the Effect of Alkaline Ions (Li+, Na+, and K+) in Silico-Alkaline Sols

1999

Alkali−silica reactions (ASR) which occur in concrete can be simulated in laboratory by destabilization of silico-alkaline aqueous solutions by addition of calcium ions. The relevant features of the reaction depend on the nature of alkaline ions (Li+, Na+, or K+) and on the silica/alkaline ratios which fix the distribution of the molecular species in the precursor solution. 29Si NMR spectroscopy and small-angle X-ray scattering (SAXS) techniques were used to study the structure and size distribution of molecular and colloidal species in sols with different silica/alkaline molar ratio and several types of alkaline ions. Experimental SAXS curves were simulated using a simple structural model …

Aqueous solutionSmall-angle X-ray scatteringInorganic chemistryHard spheresNuclear magnetic resonance spectroscopySurfaces Coatings and FilmsIonchemistry.chemical_compoundColloidchemistryMaterials ChemistryMoleculeHydroxidePhysical and Theoretical ChemistryThe Journal of Physical Chemistry B
researchProduct